How to prove compound angle formula of trigonometry | prove sin(A+B) = sinA.cosB + sinB.cosA and more formulae | Knowledge of Physics
Being straight to the point:
Suppose,
A , B and C are given angles. Then angles of the form A+B, A-B, A+B+C and A-B-C which are formed by addition or subtraction of two or more angles are called compound angles. The formula relating the compound angle with single angles is called compound angle formula.
Trigonometric Compound Angle Formulae:
- sin(A+B) = sinA cosB + sinB cosA
- sin(A-B) = sinA cosB - sinB cosA
- cos(A+B) = cosA cosB - sinA sinB
- cos(A-B) = cosA cosB + sinA sinB
- tan(A+B) = tanA+tanB1-tanAtanB
- tan(A-B) = tanA-tanB1+tanAtanB
- cot(A+B) = cotAcotB-1cotA+cotB
- cot(A-B) = cotAcotB+1-cotA+cotB
Proof of Compound angle Formulae:
1. Proving cos(A-B) = cosA cosB + sinA sinB
Fig.1 Unit circle in X-Y plane to prove cos(A-B) = cosA cosB + sinA sinB.
Consider a unit circle with its center at origin O(0,0) of X-Y co-ordinate system. Take two points P and Q on the circumference of the circle and join them to origin O, so that we have two vectors →OP and →OQ, as shown in fig.1.
→OP makes an angle A with OX. That is, ∠POX=A.
→OQ makes an angle B with OX. That is ∠QOX=B.
Therefore, the angle between →OP and →OQ is,
∠POQ=∠POX-∠QOX=A-B -------(1)
Resolving →OP and →OQ along X and Y axis, we get
Component of →OP along X-axis = |→OP|cosA
Component of →OP along Y-axis = |→OP|sinA
Similarly,
Component of →OQ along X-axis = |→OQ|cosB
Component of →OQ along Y-axis = |→OQ|cosB
So, the coordinates of point P and Q become, P(|→OP|cosA, |→OP|sinA ) and Q(|→OQ|cosB, |→OQ|sinB ) respectively.
Since, the circle is a unit circle, its radius is equal to 1. The line OP and OQ represent radius of the circle, as shown in fig.1. This implies that the magnitude of vectors →OP and →OQ equals to 1. That is,
|→OP| = 1
|→OQ| = 1
Then two coordinates become P(cosA, sinA ) and Q(cosB, sinB ).
Now the vectors →OP and →OQ can be written as
→OP = x-component →i + y-compent →j = cosA →i + sinA →j
→OQ = x-component →i + y-compent →j = cosB →i + sinB →j
Where →i and →j are unit vectors along X and Y axis respectively.
Now the cosine or cos of the angle between two vectors →OP and →OQ is,
cos(∠POQ)=→OP .→OQ|→OP||→OQ|
or, cos(A-B)=(cos(A)→i+sin(A)→j).(cos(B)→i+sin(B)→j)1×1
or, cos(A-B) = (cosA →i + sinA →j) . (cosB →i + sinB →j)
Multiplying the like terms of vectors →i and →j because →i.→i=1, →j.→j=1 but →i.→j=0, we get
cos(A-B) = cosA →i . cosB →i + sinA →j . sinB →j
or, cos(A-B) = cosA cosB (→i.→i) + sinA sinB (→j.→j)
or, cos(A-B) = cosA cosB + sinA sinB.
∴ cos(A-B) = cosA cosB + sinA sinB. ------(2)
This proves the formula for cos(A-B).
2. Proving formula cos(A+B) = cosA cosB - sinA sinB.
To prove this formula, replace B from equation (2) by -B. That is,
cos(A-(-B)) = cosA cos(-B) + sinA sin(-B)
But cos(-B) = cosB and sin(-B) = sinB, so
or, cos(A+B) = cosA cosB - sinA sinB
∴ cos(A+B) = cosA cosB - sinA sinB -------(3)
This proves the formula for cos(A+B).
3. Proving the formula for sin(A+B)
sin(A+B) = cos(900 - (A+B))
or, sin(A+B) = cos((900 - A) - B)
Considering (900 - A) as A and using (2), we have
sin(A+B) = cos(900-A) cosB + sin(900-A) sinB
or, sin(A+B) = sinA cosB + sinB cosA
∴ sin(A+B) = sinA cosB + sinB cosA --------(4)
This proves the formula for sin(A+B).
4. Proving the formula for sin(A-B)
Replacing B in (4) by -B, we get
sin(A-B) = sinA cosB - sinB cosA -------(5)
Or you can also get this relation by
sin(A-B) = cos(900 - (A-B)) and use the formula for cos(A+B) as we proved formula for sin(A+B). Try it yourself.
5. Proving the formula for tan(A+B)
We know,
tanθ=sinθcosθ, So
tan(A+B)=sin(A+B)cos(A+B)
Using the formula given by equations (3) and (4),
tan(A+B)=sinAcosA+sinBcosAcosAcosB-sinAsinB
Dividing denominator and numerator by cosA cosB,
tan(A+B)=sinAcosB+sinBcosAcosAcosBcosAcosB-sinAsinBcosAcosB
tan(A+B)=sinAcosBcosAcosB+sinBcosAcosAcosBcosAcosBcosAcosB-sinAsinBcosAcosB
tan(A+B)=sinAcosA+sinBcosB1-sinAcosAsinBcosB
tan(A+B)=tanA+tanB1-tanAtanB
∴ tan(A+B)=tanA+tanB1-tanAtanB -----(6).
This proves formula for tan(A+B).
6. Proving the formula for tan(A-B)
Replacing B in (6) by -B, we get
tan(A-B)=tanA-tanB1+tanAtanB
Or, you can also prove it by using formula given by equations (2) and (5). Try it yourself. Follow the steps as we used for proving the formula for tan(A+B).
∴ tan(A-B)=tanA-tanB1+tanAtanB ------(7)
This proves the formula for tan(A-B).
7. Proving the formula for cot(A+B)
We know,
cotθ=cosθsinθ, so
cot(A+B)=cos(A+B)sin(A+B)
Using the formula given by equations (3) and (4), we have
cot(A+B)=cosAcosB-sinAsinBsinAcosB+sinBcosA
Dividing denominator and numerator by sinA sinB, we get
cot(A+B)=cosAcosB-sinAsinBsinAsinBsinAcosB+sinBcosAsinAsinB
cot(A+B)=cosAcosBsinAsinB-sinAsinBsinAsinBsinAcosBsinAsinB+sinBcosAsinAsinB
cot(A+B)=cosAsinAcosBsinB-1cosBsinB+cosAsinA
cot(A+B)=cotAcotB-1cotB+cotA
∴ cot(A+B)=cotBcotA-1cotB+cotA -------(8)
This proves the formula for cot(A+B).
8. Proving the formula for cot(A-B)
To get formula for cot(A-B), replace B in equation by -B, then
cot(A-B)=cot(-B)cotA-1cot(-B)+cotA
or, cot(A-B)=-cotBcotA-1-cotB+cotA
or, cot(A-B)=-(cotBcotA+1)-(cotB-cotA)
∴ cot(A-B)=cotBcotA+1cotB-cotA ----(9)
This proves the formula for cot(A-B).
You can also prove formula given by equation (9) by using equations (2) and (5), by following the steps as we did for proving the formula for cot(A+B).
Some rules of Angle conversion:
- sin(-θ) = - sinθ
- cos(-θ) = cosθ
- tan(-θ) = sin(-θ)cos(-θ)=-sinθcosθ=-tanθ
- cot(-θ) = cos(-θ)sin(-θ)=cosθ-sinθ=-cotθ
- sec(-θ)=1cos(-θ)=1cosθ=secθ
- cosec(-θ) = 1sin(-θ)=1-sinθ = -cosecθ.
For Example:
1. Find the value of sin(-150).
Here,
sin(-150)
= sin(300-450)
= sin300cos450-sin450cos300 ----(i)
We have, sin300=12and cos300=√32 and sin450=cos450=1√2.
Using these values,
sin(-150)=121√2-1√2√32
sin(-150)=1-√32√2
As √3>1,
sin(-150)=-√3-12√2
∴ sin(-150)=-√3-12√2.
This gives the rquired value.
Also from (i),
sin(-150)=sin300cos450-sin450cos300
or, sin(-150)=-(sin450cos300-sin300cos450)
or, sin(-150)=-sin(450-300)
or, sin(-150)=-sin150
∴ sin(-150)=-sin150.//
2. If A+B+C=π, then prove that
a.) tanA + tanB + tanC = tanA tanB tanC
b.) cotA2 + cotB2 + cotC2 = cotA2 cotB2 cotC2
c.) cotA cotB + cotB cotC + cotC cotA = 1
Solution:
Given,
A + B + C =π
→ A+B = π - C ------(i)
a.) To prove part (a), take tan on both sides of (i),
tan(A+B) = tan(π - C)
or, tanA+tanB1-tanAtanB=-tanC
or, tanA + tanB = -tanC (1 - tanA tanB)
or, tanA + tanB = -tanC + tanA tanB tanC
or, tanA + tanB + tanC = tanA tanB tanC
∴ tanA + tanB + tanC = tanA tanB tanC.
This proves the first part.
b.) To prove second part, divide both of (i) by 2,
A+B=π-C
→A+B2=π-C2
Taking cot on both sides, we get
cot(A+B2)=cot(π-C2)
or, cot(A2+B2)=cot(π2-C2)
or, cotA2cotB2-1cotB2+cotA2=tanC2
or, cotA2cotB2-1=tanC2(cotB2+cotA2)
or, cotA2cotB2-1=1cotC2(cotB2+cotA2)
or, cotC2(cotA2cotB2-1)= (cotB2+cotA2)
or, cotA2cotB2cotC2-cotC2= cotB2+cotA2
or, cotA2+cotB2+cotC2= cotB2cotA2cotC2
∴ cotA2+cotB2+cotC2= cotA2.cotB2.cotC2.
This proves the second part.
c.) To prove third part, take cot on both sides of (i),
cot(A+B) = cot(π - C)
or, cotAcotB-1cotB+cotA=-cotC
or, cotA cotB -1 = - cotC (cotB + cotA)
or, cotA cotB - 1 = - cotB cotC - cotC cotA
or, cotA cotB + cotB cotC + cotC cotA = 1
∴ cotA cotB + cotB cotC + cotC cotA = 1.
This proves the third part.
3.) Prove that: sin(A-450)=1√2(sinA-cosA)
Solution:
Taking Left Hand Side,
sin(A-450)
= sinAcos450-sin450cosA
But sin450=cos450=1√2, so
= sinA1√2-1√2cosA
= 1√2(sinA-cosA), which the right hand side.
∴ sin(A-450)=1√2(sinA-cosA). Hence proved.
Follow this site for more updates.
Comments
Post a Comment