simple but the best way of finding derivatives of logarithmic, exponential and inverse trigonometric or circular functions | mathematics made easier.
In this post, we will be following Basic mathematics of grade 11, a book by BC Bajracharya.
Click here to learn basic concepts of derivatives of functions.
Exponential function:
The function of the form, `f = b^i`, where b refers to base and i refers to index, is called the exponential function. Usually, the base takes a constant value and the index takes variables.
For exmaple,
(1) `y = a^x ...(1)`
where, y = f(x) = function, b = constant value, x = variable of y.
(2) `y = e^x` , this is also known as natural exponential function.
Logarithmic function:
The inverse of an exponential function is called the logarithmic function. If we take log on both sides of the above equation (1) with base 'a' then
`log_ay = log_a(a^x)`
or, `log_ay = x log_aa`
[`\therefore` `log_aa^b = b log_aa` and `log_a a = 1`.]
So, `log_ay = x .....(2)`
In summary, if `y = a^x` is an exponential function, then `log_ay = x` is a logarithmic function.
In most cases, a special type of exponential function `y = e^x` is used. Here, e is given as the limiting value as below:
`e = \lim_(n->\infty)(1 + \frac{1}{n})^n ........(3)`
Numerically, `n \approx 2.718281828`.
Logarithmic function with base e or `log_e` is also called natural log function and is denoted by ln or simply log.
Some properties of conversion of logarithmic functions:
(1) `log_a(x\cdoty) = log_ax + log_ay`
(2) `log_a(\frac{x}{y}) = log_ax - log_ay`
(3) `log_a(x^n) = n log_ax`
(3) `log_aa = 1`
(4) `log_a1 = 0`
(5) ` log_ap = log_aq \cdot log_qp`
Limit Theorems of logarithmic and exponential functions:
1) `\lim_(x->0)\frac{log(1+x)}{x} = 1`
2) `\lim_(x->0)\frac{e^x - 1}{x} = 1`
3) `\lim_(x->0)\frac{a^x - 1}{x} = 1`
You can simply prove these formulae by using L-Hospital's rule.
Derivatives of some logarithmic functions:
1. Derivative of `y = logx`.
Let's `\Deltax` and `\Deltay` be small increments or changes in x and y respectively. Then
`y = logx ....(1)` and
`y + \Deltay = log(x + \Deltax) .......(2)`
Subtrac (1) from (2), then
`\Deltay = \frac{log(x+\Deltax)-logx}{\Deltax}`
or, `\frac{\Deltay}{\Deltax} = \frac{log(\frac{x+\Deltax}{x})}{\Deltax}`
[`\therefore` Use of property (2).]
`\frac{\Deltay}{\Deltax} = \frac{log(1+\frac{\Deltax}{x})}{\Deltax}`
Taking limit as `\Deltax->0` on both sides,
`\lim_(\Deltax->0)\frac{\Deltay}{\Deltax} = \lim_(\Deltax->0)\frac{log(1+\frac{\Deltax}{x})}{\Deltax}`
or, `\frac{dy}{dx} = \lim_(\Deltax->0) \frac{log(1+\frac{\Deltax}{x})}{\frac{\Deltax}{x} \cdot x}`
Using the limit theorem, `\lim_(x->0)\frac{log(1+x)}{x} =1`,
or, `\frac{dy}{dx}= 1 \cdot \frac{1}{x}`
`\therefore` `\frac{d}{dx} logx = \frac{1}{x}`.
2. Derivative of `y = log(ax+b)`.
To get the derivative of the given function, let's use rules of derivatives as well as the limit theorem as used in the above problem.
Let's `y = log(ax+b) ....(1)`
Differentiating (1) with respect to x,
`\frac{d}{dx}y = \frac{d}{dx} log(ax+b)`
Here we use chain rule as, learn rules from here.
`\frac{d}{dx}y = \frac{d log(ax+b)}{d(ax+b)} \cdot \frac{d (ax+b)}{dx}`
Using `\frac{d logx}{dx} = \frac{1}{x}`,
`\frac{d y}{dx} = \frac{1}{(ax+b)} \cdot (a \cdot 1 + 0)`
or, `\frac{d y}{dx} = \frac{a}{ax+b}`
`\therefore` `\frac{d log(ax+b)}{dx} = \frac{a}{ax+b}`.
By using limit theorem,
Here, y = log(ax+b) .... (1)
Also, `y + \Deltay = log(a(x+\Deltax)+b) .....(2)`
Subtract (1) from (2),
`\Deltay = log(a(x+\Deltax)+b) - log(ax+b`
or, `\frac{\Deltay}{\Deltax} = \frac{log(a(x+\Deltax)+b) - log(ax+b)}{\Deltax}`
or, `\frac{\Deltay}{\Deltax} = \frac{log(\frac{a(x+\Deltax)+b}{ax+b})}{\Deltax}`
or, `\frac{\Deltay}{\Deltax} = \frac{ log(1+\frac{a\Deltax}{ax+b})}{\Deltax}`
Now taking limit as `\Deltax->0` on both sides,
`\lim_(\Deltax->0)\frac{\Deltay}{\Deltax} = \lim_(\Deltax->0)\frac{log(1+\frac{a\Deltax}{ax+b})}{\Deltax}`
or, `\frac{dy}{dx} = \lim_(\Deltax->0)\frac{log(1+\frac{a\Deltax}{ax+b})}{\frac{a\Deltax}{ax+b}} \frac{a}{ax+b}`
or, `\frac{dy}{dx} = 1 \cdot \frac{a}{ax+b}`
`\therefore` `\frac{d}{dx} log(ax+b) = \frac{a}{ax+b}`.
3. Derivative of `y = log(\frac{x}{10})`
Here, `y = log(\frac{x}{10}) ......(1)`
Also, `y+\Deltay = log(\frac{x+\Deltax}{10}) ....(2)`
Subtract (1) from (2),
`\Deltay = log(\frac{x+\Deltax}{10}) - log(\frac{x}{10})`
or, `\Deltay = log[\frac{\frac{x+\Deltax}{10}}{\frac{x}{10}}]`
Here upper 10 cancels lower 10 insid log, so
`\Deltay = log[\frac{x+\Deltax}{x}]`
or. `\frac{\Deltay}{\Deltax} = \frac{log[\frac{x+\Deltax}{x}]}{\Deltax}`
or, `\frac{\Deltay}{\Deltax} = \frac{log[1+\frac{\Deltax}{x}]}{\Deltax}`
Now taking limit as `\Deltax->0` on both sides,
`\lim_(\Deltax->0)\frac{\Deltay}{\Deltax} = \lim_(\Deltax->0) \frac{log[1+\frac{\Deltax}{x}]}{\frac{\Deltax}{x}} \frac{1}{x}`
or, `\frac{dy}{dx} = 1 \cdot \frac{1}{x}`
`\therefore` `\frac{d}{dx} log(\frac{x}{10}) = \frac{1}{x}.`
Derivatives of some Exponential functions:
1. Derivative of `y = e^x`
Here, `y = e^x ....(1)`
Also, `y+\Deltay = e^(x+\Deltax) ....(2)`
Subtract (1) from (2),
`\Deltay = e^(x+\Deltax) - e^x`
or, `\Deltay = e^x (e^(\Deltax) - 1)`
or, `\frac{\Deltay}{\Deltax} = \frac{e^x (e^(\Deltax) - 1)}{\Deltax}`
or, `\lim_(\Deltax->0) \frac{|Deltay}{\Deltax} =e^x \lim_(\Deltax->0) \frac{e^(\Deltax) - 1}{\Deltax}`
Using limit theorem, `\lim_(x->0)\frac{e^x - 1}{x} =1`,
or, `\frac{dy}{dx} = e^x \cdot 1`
`\therefore` `\frac{d}{dx} e^x = e^x`.
2. Derivative of `y = e^(ax+b)`
Here, `y = e^(ax+b) ..... (1)`
Also, `y+\Deltay = e^[a(x+\Deltax)+b] ....(2)`
Subtract (1) from (2),
`\Deltay = e^[a(x+\Deltax)+b] - e^[ax+b]`
or, `\Deltay= e^[ax+b] \cdot e^[a\Deltax] - e^[ax+b]`
or, `\Deltay = e^[ax+b] (e^[a\Deltax] - 1)`
or, `\frac{\Deltay}{\Deltax} = e^[ax+b] \frac{e^[a\Deltax] - 1}{\Deltax}`
or, `\lim_(\Deltax->0) \frac{\Deltay}{\Deltax} = e^[ax+b] \lim_(\Deltax->0) \frac{e^[a\Deltax] - 1}{a\Deltax} a`
or, `\frac{dy}{dx} = e^[ax+b] \cdot a`
`\therefore` `\frac{d}{dx} e^[ax+b] = a e^[ax+b]`.
3. Derivative of `y = e^[\frac{x}{3}]`
Here, `y = e^[\frac{x}{3}] ....(1)`
Also, `y+\Deltay = e^[\frac{x+\Deltax}{3}] .......(2)`
Subtract (1) from(2),
`\Deltay = e^[\frac{x+\Deltax}{3}] - e^[\frac{x}{3}]`
or, `\Deltay = e^[\frac{x}{3}] (e^[\frac{\Deltax}{3}] - 1)`
or, `\frac{\Deltay}{\Deltax} = e^[\frac{x}{3}] \frac{e^[\frac{x}{3}] - 1}{\Deltax}`
or, `\lim_(\Deltax->0)\frac{\Deltay}{\Deltax} = e^[\frac{x}{3}] \lim_(\Deltax->0) \frac{e^[\frac{\Deltax}{3}] -1}{\frac{\Deltax}{3}} \times \frac{1}{3}`
or, `\frac{dy}{dx} = e^[\frac{x}{3}] \times 1 \times \frac{1}{3}`
`\therefore` `\frac{d}{dx} e^[\frac{x}{3}] = \frac{1}{3} e^[\frac{x}{3}]`.
Inverse trigonometric functions or inverse circular functions:-
As you all knew before, the basic trigonometric functions are
y = sin(x), y = cos(x) and y = tan(x).
If these functions are expressed as
siny = x, cosy = x and tany = x so that,
`y = sin^-1x`, `y = cos^-1x` and `y = tan^-1x`, read as inverse sine of x, inverse cosine of x and inverse tangent of x respectively. These functions are called inverse trigonometric or inverse circular functions.
These inverse circular functions are also denoted by using arcs such as,
y = arc sinx = `sin^-1x` and same for cosine, tangent etc.
Note that: `sin^-1x` means never take in mind as `\frac{1}{sinx}` because it is totally wrong. `sin^-1x` and `\frac{1}{sinx}` are not the same.
Some useful relations of inverse circular funations:
- `sin^-1sin\theta = \theta` and similar for other functions
- `sin^-1x = cosec^-1(\frac{1}{x})` and same for other functions
- `sin^-1x + cos^-1x = \frac{\pi}{2}`
- `sin^-1x = cos^-1\sqrt{1-x^2} = tan^-1\frac{x}{\sqrt{1-x^2}}`
- `sin^-1(-x) = - sin^-1x` and `cos^-1(-x) = \pi - cos^-1x`
Comments
Post a Comment